

Transcriptomics –

Global transcript analysis

Dr Peter Kille Cardiff School of Biosciences

-ome refers to totality of something (https://en.wikipedia.org/wiki/List_of_omics_topics_in_biology)

'Omics

Hypothesis independent investigation

- 'Treatment' Vs Control
- Comparative not quantitative (qPCR)

Omics = study of [fill in the word] content within cell/tissues/ organism

- > characterization and quantification
- > structure, function, evolution

Genomics (DNA and genetic information)

Transcriptomics (RNA) Proteomics (Protein) Metabolomics (small molecules = metabolites)

Epigenomics (reversible genome modifications ~ "chemical tags")

Comparative genomics (~ evolution) Metagenomics (~ environmental genomics)

New terms are popping up all the times: e.g. nutrigenomics (relation between diet and genes)

Transcriptomics = global analysis of gene expression (RNA)

- Qualitatively identify genes are expressed/not
- Quantitatively measure the varying levels of expression

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

GC

NMR

high pressure (performance) Gas chromatography liquid chromatography

MS

HPLC

Mass spectroscopy

Nuclear Magnetic Resonance

Metabolomics

CARDIFF					
PRIFYSGOL CAERDYD					

Experimental design is everything

Biosample

Biomaterial preparation: Ruling out confounding factors

Consider:

Sampling time

- Circadian influence
- Dark/Light

Operator

• Animal handle

Underlying Physiology

- Sex
- Genetic similarity
- General stressors

Experimental setup

- Position in incubator
- Time to sample tissue

Sampling Time: Circadian Influence

Operator: Animal Handler

Underlying Physiology: Sex

Experimental Infrastructure: Position in incubator

Biomaterial preparation: Sample heterogeneity

Whole organisms

Tissues

Cell populations

Single cell transcriptomics

Many techniques (e.g. Drop-seq)

Quality and quantity

Biomolecule Isolation, Quantification & Identification

Central Dogma DNA -> RNA -> Protein

Purity: Spectral Analysis

Integrity: Molecular Weight Profiling

CARDIFF					
PRIFYSGOL CAERDYD					

From counting decay to counting reads

Transcript quantification

Transcriptomics: Arrays Vs RNAseq

Arrays

DIFF

PRIFYSGOL

RNAseq

Comparison

Arrays

Gold standards Low cost Low cost analysis "Easier"

RNAseq

Any organism Novel transcript identification Spliced variants Reproducible Low input ok (down to1ng)

Limited to probes Input ~ 300ng-3ug Data analysis

- More complicated
- Need computing power & storage capacity
 More expensive

With time..

Arrays have there place

BUT

Arrays are:

CARDIFF

PRIFYSGOL

/ERSITY

- Everywhere in the literature
- Responsible for some very pretty pictures you'll never see with . RNAseq...

Arrays

PLEASE WAIT DATA LOADING

CARDIFF					
PRIFYSGOL CAERDYD					

Seeing spots before your eyes

Microarrays

Transcriptomics Arrays

Arrays (Gene arrays)

RDIFF

PRIFYSGOL

- Solid supports ("DNA chip") upon which a collection of genespecific nucleic acids have been placed at defined locations, either by spotting or direct synthesis.
- Sample of interest is hybridized with the gene-specific targets on the array
- One-color vs two-color arrays

e.g. : two-color array

@Guy Zinman

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

From macro arrays to microarrays

Arrays (Gene arrays)

- Solid supports ("DNA chip") upon which a collection of genespecific nucleic acids have been placed at defined locations, either by spotting or direct synthesis.
- Sample of interest is hybridized with the gene-specific targets on the array

Macro (2-6,000 elements)

Micro (spotted) (2-20,000 elements)

> Micro (Affymetrix) (1M-100,000 elements)

UNI

- · Array is scanned to measure fluorescent label
- Ratio of red vs green ~ relative abundance of the two samples (two color array)

Human Genome U95A Genechip Array

IFF

Background Correction (Normlaisation)

Raw data

After intensity normalization

Spatial bias estimate

After spatial normalization

Spot Morphology: Signal Vs background / Spot filtering

Image to numbers: Mean, median and backgrounds

# <hea< th=""><th>der></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></hea<>	der>																									
# Date	: Fri Fel	23 15:26	5:39 200	7																						
#R: E	MF1_Cy	5_66.tif																								
#G:E	MF1_Cy	3_70.tif																								
# Func	tion cal	l:																								
# finds	Spots(ba	atch = "ba	atch1",	i = 1, set.	template	= TRUE, srg	.or.gogac =	TRUE, grid	find.only	= FALSE, I	ocation.in	fo = TRUE,	shape.info	o = TRUE, d	erived.info	= TRUE, q	uality.mea	asures = TR	UE, morph.	bg = TRUE,	median.va	I = TRUE, r	nean.val =	TRUE, IQR.	val = TRUE	., sd.val = TF
#grid.	blocks.	: 4																								
#grid.	blocks.y	: 12																								
# spot	s.x: 18																									
# spot	s.y: 16																									
# <td>ader></td> <td></td>	ader>																									
#																										
indexs	grid_r	grid_c	spot_r	spot_c	ID	Rmean	Rmedian	RIQR	Rsd	RNSatur	Gmean	Gmedian	GIQR	Gsd	GNSatura	morphR	morphG	morphR.c	morphG.c	perimeter	circularity	area	xpos	ypos	logratios	spot.quali
	0 :	l 1		1 1	#Landma	r 19550.93	21434	0.99159	13920.26	0	48975.58	51807	0.611968	19674.56	0	66	66	5 109	159	61	0.618018	183	429.2951	456.7049	-1.27586	0.618018
1	1 :	l 1		1 2	#N2	4376.996	2431	1.481547	8220.048	0	771.5618	386	1.071379	953.3454	0	66	65	i 109	159	121	0.242899	283	471.9011	465.1201	2.881195	0.242899
	2 :	l 1		1 3	Gp_mxAE	8466.144	8922	0.601107	4180.446	0	563.488	509	0.939876	343.3921	0	66	66	5 116	159	103	0.543686	459	520.3638	458.4553	4.321277	0.543686
	3 :	ι 1		1 4	Gp_mxAE	3 207.4545	232	0.522189	71.41059	0	2396.545	574	1.242874	4531.118	0	66	66	5 116	159	10	1.382301	11	569.3636	457.0909	-1.61365	1.382301
	4 :	l 1		1 5	Gp_mxAE	3891.278	2807	0.791134	3482.521	0	2263.943	1665	1.072527	1961.541	0	66	66	5 116	166	98	0.461883	353	620.0538	464.5807	0.777532	0.461883
	5 1	ι 1		1 6	Gp_mxAE	3 736.4161	381.5	1.379564	1123.411	0	781.4871	304	1.175071	2516.969	0	66	66	i 110	166	172	0.263357	620	664.8984	460.229	0.406678	0.263357
	6	l 1		1 7	Gp_mxAE	8030.121	6498	0.683753	4790.943	0	648.4438	467	0.90556	1595.596	0	66	66	5 109	166	98	0.628057	480	709.0333	460.2958	4.003593	0.628057
1.1.1	7 :	ι 1		1 8	Gp_mxAE	3 1665.696	1219	1.101765	1381.668	0	422.0575	354	1.003959	307.4084	0	65	66	5 106	163	159	0.406104	817	754.6634	459.3121	2.002503	0.406104
	8 :	l 1		19	Gp_mxAE	6012.969	5129	0.500412	3164.117	0	555.2592	458.5	0.900759	449.9647	0	65	66	5 106	153	102	0.591842	490	803.4633	460.4061	3.689513	0.591842
1	9 1	ι 1		1 10	Gp_mxAE	663.0853	489	0.944245	748.3574	0	347.0349	301	1.023412	229.3386	0	65	65	5 106	149	89	0.409307	258	851.3217	462.7713	0.845277	0.409307
1	0 :	l 1		1 11	Gp_mxAE	9241.633	8466	0.634339	4981.548	0	445.8821	361.5	1.007024	313.959	0	65	65	5 104	139	100	0.57554	458	896.2991	458.583	4.824457	0.57554
1	1 :	ι 1		1 12	Gp_mxAE	3 16467.77	15143	0.580121	9618.427	0	539.6312	488	0.941121	473.78	0	65	65	5 109	143	97	0.564946	423	944.5579	456.4303	5.155644	0.564946
1	2 :	l 1		1 13	Gp_mxAE	3499.049	2924	0.787008	2429.844	0	404.8202	343	1.030729	275.3605	0	65	65	5 109	151	98	0.582261	445	992.382	457.7685	3.362354	0.582261
1	3 1	l 1		1 14	Gp_mxAE	3 10307.24	9149	0.599567	5954.355	0	490.2557	394	0.959687	489.6692	0	66	66	5 109	159	106	0.537952	481	1037.827	458.5385	4.791401	0.537952
1	4 :	l 1		1 15	Gp_mxAE	3 19446.28	17784	0.648635	10850.56	0	9050.245	7628.5	0.553985	8737.477	0	66	66	5 109	161	88	0.675053	416	1085.25	457.637	1.228281	0.675053
1	5 :	l 1		1 16	Gp_mxAE	3 16286.4	14833	0.447445	7467.802	0	1285.201	1205	0.750484	681.1885	0	66	66	5 119	161	82	0.715782	383	1131.859	456.5718	3.696537	0.715782
1	6	l 1		1 17	Gp_mxAE	9457.871	8060	0.677502	6660.508	0	1350.422	1189	0.847897	804.2121	0	66	66	5 119	161	116	0.457604	490	1177.547	457.8	2.83156	0.457604
1	7 :	l 1		1 18	Gp_mxAE	4275.481	3694	0.60644	2363.04	0	509.6008	493	0.907593	618.4857	0	66	66	5 119	155	106	0.571504	511	1227.863	459.3483	3.086866	0.571504
1	8 1	l 1	. :	2 1	Gp_mxAE	6653.602	4637.5	0.863097	5745.363	0	1942.654	1526	1.063166	1443.269	0	66	66	5 109	159	100	0.603186	480	426.2604	504.6146	1.646699	0.603186
1	9 :	l 1	. :	2 2	Gp_mxAA	16715.79	15234	0.54898	9025.307	0	628.6609	559	0.813995	396.3539	0	66	65	5 109	159	114	0.561793	581	474.3081	507.4768	4.940376	0.561793
2	0	l 1	. :	2 3	Gp_mxAE	3 5666.677	4153	0.795089	4318.365	0	435.0374	333	1.144516	388.8021	0	66	66	5 116	159	120	0.443314	508	520.7697	502.6201	3.936131	0.443314
2	1 :	l 1	. :	2 4	Gp_mxAA	30046.56	30752	0.528628	13692.75	0	7921.173	7856	0.507642	3080.114	0	66	66	5 121	159	98	0.628057	480	571.4271	506.7042	1.977885	0.628057
2	2 :	L 1		2 5	Gp_mxAE	10687.84	9397	0.668451	7229.077	0	939.567	483	1.05963	4235.535	0	67	66	5 121	166	104	0.563488	485	615.7753	503.2062	4.483758	0.563488
2	3 :	L 1		2 6	Gp_mxA/	23757.52	22141.5	0.735075	12034.82	0	674.9464	598.5	0.848687	392.014	0	67	66	5 121	166	98	0.65946	504	663.621	506.0556	5.373455	0.65946
2	4 :	l 1		2 7	Gp_mxAE	7958.916	6004	0.726319	4556.356	0	3735.305	3491	0.925711	2386.106	0	67	66	5 109	166	98	0.64245	491	710.2138	505.0468	0.79363	0.64245
2	5 1	L 1		2 8	Gp_mxAA	4022.173	3629	0.739805	2240.001	0	835.6097	581.5	0.945422	2993.677	0	66	66	5 108	163	106	0.621832	556	756.8435	505.4119	2.789048	0.621832

DIFF

PRIFYSGOL

CARDIFF					
PRIFYSGOL CAERDYD					

Elegance of counting

RNAseq

		Part 1 – Sample preparation
Bio-material Experimental design Ensuring 'true comparison'	Biomolecule isolation	Bio-molecule Preparation Extraction Measurement

Part 2 – data processing		
Data processing Raw Data processing Normalization	Statistical analysis Two way comparisons Multi-variant analysis	Functional Interpretation Enrichment Analysis Network modeling Regulatory pathways

Part 1 – Sample preparation

Sequencing Technology

See Prof. Hilary Rogers lecture : Sanger & NGS sequencing

Illumina NGS: paired end sequencing

DIFF

ERSITY

PRIFYSGOL

Illumina NGS: adaptor library binds to the primers

RNAseq – data processing the concept

RDIFF

ERSITY

PRIFYSGOL

A

RNAseq – data processing the concept

RDIFF

PRIFYSGOL

ERSITY

• Map to Genome (= Gene) or Transcriptome (= Varient)

Calibration = Normalisation = Scaling

Aim: Counting reads

= 1 read

1. Number of mapped reads ("Sequencing depth")

Sample A has double number of reads than sample B

2. Gene length

Gene X longer than Gene Y

3. RNA composition

Gene DE takes up most of the reads in sample A but not in sample B

Several common normalization methods exist to account for these differences:

Normalization of Counting

FPKM, Deseq2, EdgeR

FPKM

- Length of Gene
- Number of mapped reads
 - Unique/multiple hit
 - Genome Vs cDNA
 - Paired mapping

Frequency Per Kilobase Million FPKM

Vhat information can you acquire apart from transcript frequencies

• De novo transcript assembly

SNPs

• SSRs

• Novel splice varients

• miRNAs (depends on library production)

RNAseq analysis: Simple, not so much

CARDIFF UNIVERSITY

PRIFYSGOL

Wang et. al. 2011 Bioinformatics 27:2598-2600

Start with count file

						Muscle_RawCo	unts.txt ~		
AMP.re	ep1	AMP. re	p2	AMP.re	p3	DLM.rep1	DLM. rep2	DLM. rep3	
FBgn0031081	29	89	57	466	322	261			
FBgn0053217	93	107	124	5	9	2			
FBgn0052350	247	172	300	55	67	14			
FBgn0024733	10127	12036	12203	3887	5317	2951			
FBgn0040372	2474	2221	3032	227	241	182			
FBgn0000316	1168	1291	1572	337	371	239			
FBgn0024989	2333	2139	2017	454	543	312			
FBgn0004034	21	58	53	10	18	3			
FBgn0000022	217	160	315	0	0	0			
FBgn0004170	484	275	588	0	0	0			
FBgn0000137	33	36	50	0	0	0			
FBgn0029522	140	122	178	30	61	20			
FBgn0052817	20	22	24	0	1	1			
FBgn0029524	35	26	47	3	9	3			
FBgn0023536	217	215	254	287	443	261			
FBgn0023534	9	8	5	46	23	18			
FBgn0023535	9	9	15	28	24	12			
FBgn0023537	2728	2702	3148	785	1132	514			
FBgn0029525	1126	1252	1355	67	117	37			
FBgn0029523	147	117	235	7	11	1			
FBgn0010019	4	5	6	2893	5718	290			
FBgn0011822	0	0	0	98	1138	0			
FBgn0052816	25	44	31	161	168	131			
FBgn0040370	0	0	0	32	15	9			
FBgn0040373	1390	1269	1641	24	46	17			
FBgn0000108	52	41	63	860	252	323			
FBgn0025640	305	548	449	425	471	366			
FBgn0025635	506	541	570	33	65	BØ			
FBgn0001341	1299	1686	1587	25	65	27			

CARDIFF

PRIFYSGOL

CARDIFF					
PRIFYSGOL CAERDYD					

T-test to multi-variant – False discover

Statistical analysis

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

False Discovery Rate

StatQuest - FDR

https://www.youtube.com/watch?v=K8LQSvtjcEo

Enrichment analysis (GSEA)

StatQuest - Fisher's Exact Test

https://statquest.org/statquickie-fishers-exact-test-and-enrichment-analysis/

P-Values and FDR (Adjusted P-value)

Differentially expressed genes: THE table

Id	Early	Mid	FoldChange	pg2FoldChar	e	pvalue	P	ij	dispGene	dispFit	dispMAP	dispersion
gene33311	1	5 1194	688.963	9	28	1.96E-102		55E-98	0.0793	0.2618	0.158	0.158
gene30696	1	2 895	709.357		47	5.61E-82		96E-78	0.1462	0.262	0.1981	0.1981
gene4417		7 478	695.38	9	42	8.02E-74		69E-70	0.1206	0.2626	0.1897	0.1897
gene1862		9 1541	1468.39	1	52	1.05E-70		95E-67	0.3543	0.2616	0.2977	0.2977
gene32742		8 986	1023.161	9	99	1.42E-69		73E-66	0.2662	0.2619	0.264	0.264
gene30662		4 296	653.625	9	52	3.65E-61		29E-57	0.158	0.2635	0.2032	0.2032
gene7227		4 206	579.437	9	79	3.06E-60		64E-57	0.0585	0.2645	0.1661	0.1661
gene8369		4 1022	2259.295	11	42	2.48E-58		41E-55	0.6932	0.2619	0.3635	0.3635
gene35602		3 300	897.395		81	3.73E-58		82E-55	0.1635	0.2635	0.2151	0.2151
gene31461		8 891	1064.426	10	56	6.25E-58		27E-54	0.3693	0.262	0.329	0.325
gene30844		6 565	762.688	9	75	6.89E-56		30E-52	0.3306	0.2624	0.2968	0.2968
gene27109		3 1359	3413.899	11	37	3.99E-55		07E-52	0.5872	0.2617	0.436	0.436
gene35172		2 195	790.342	9	26	1.44E-54		40E-51	0.0675	0.2647	0.1734	0.1734
gene25849		2 110	370.805	8	35	3.85E-54		07E-51	0	0.2674	0.1287	0.1287

- P-value <0.05 commonly used but...
- False Discovery Rate (FDR) vital

(because: many variables (genes) but small sample set (few replicates))

MA and Volvcano plots: binary analysis

Hierarchical clustering, PCA and Dendrograms

Cluster dendrogram

1000 -800 -600 -200 -200 -0 - 200 -0 - 200 -0 - 200 -0 - 200 -0 - 200 -0 - 200 -0 - 200 -1 - 200 -1 - 200 -1 - 200 -200

Sam	ple_ID	files	Development_group	SRA_ID	clutch_s	developmental_stage
E1		E1.tab	Early	SRR2517989	Ueno	NF stage 10.5
E2		E2.tab	Early	SRR2517975	Taira	NF stage 10.5
E3		E3.tab	Early	SRR2517990	Ueno	NF stage 12
E4		E4.tab	Early	SRR2517976	Taira	NF stage 12
M1		M1.tab	Mid	SRR2517992	Ueno	NF stage 20
M2		M2.tab	Mid	SRR2517978	Taira	NF stage 20
М3		M3.tab	Mid	SRR2517993	Ueno	NF stage 25
M4		M4.tab	Mid	SRR2517979	Taira	NF stage 25

Table 1: Data files and associated biological conditions.

Principal Component Analysis - Axes 1 and 2

Principal Component Analysis - Axes 1 and 3

E1	E1.tab Early	SRR2517989 Ueno	NF stage 10.5
E2	E2.tab Early	SRR2517975 Taira	NF stage 10.5
E3	E3.tab Early	SRR2517990 Ueno	NF stage 12
E4	E4.tab Early	SRR2517976 Taira	NF stage 12
M1	M1.tab Mid	SRR2517992 Ueno	NF stage 20
M2	M2.tab Mid	SRR2517978 Taira	NF stage 20
М3	M3.tab Mid	SRR2517993 Ueno	NF stage 25
M4	M4.tab Mid	SRR2517979 Taira	NF stage 25

Table 1: Data files and associated biological conditions.

Enrichment to functional networks

Functional Interpretation

Analysis of 'groups' of genes identifying collective/coordinated changes associated with underlying biological process.

- Gene Set Enrichment Analysis
- Gene Ontology analysis

Uses Prior Knowledge (databases, pathways, ect)

- "Guilt by association" => if unknown gene *i* is similar in expression to known gene *j*, maybe they are involved in the same/related pathway
- Dimensionality reduction: datasets are too big to be able to get information out without reorganizing the data

Functional data analysis: Gene annotation enrichment analysis

- Enrichment
- The occurrence of a specific gene annotation within a subset of genes occurs at a statistically higher frequency than would be expected if the parental population was sampled by random.

Think about selected red and blue balls randomly taken from a bag.

- The proportion of red and blue balls in any sub-set should represented the ratio of the original mix if sampling is **random** and all balls are **identical**.
- The statistical **probability** of any deviation from the original ratio can be mathematically calculated.
- The greater the **deviation from the expected ratio** the more probable that the sampling is not random i.e. The sampling technique is selecting or enriching.

Idea: Overlap gene sets

DIFF

PRIFYSGOL

Rank genes by a criteria (e.g. FC or expression level) Walk down your list and compute overlap with known gene sets (database)

Idea: **Gene ontology** ~ definition of gene sets by:

- Biological process (BP) e.g. DNA replication
- Molecular Function (MF) e.g. enzyme, DNA-binding
- Cellular Component (CC) e.g. cell membrane

Different level

Work across organisms > powerful

Gene ontology and representational analysis

4. Functional Annotation Chart Report

PRIFYSGOL

SDyb

http://david.abcc.ncifcrf.gov/

Functional Annotation Chart:

Chart Report is an annotation-term-focused view which lists annotation terms and their associated genes under study. To avoid over counting duplicated genes, the Fisher Exact statistics is calculated based on corresponding DAVID gene IDs by which all redundence in original IDs are removed. All result of Chart Report has to pass the thresholds (by default, Max.Prob.<=0.1 and Min.Count>=2) in Chart Option section to ensure only statistically significant ones displayed.

EASE Score Threshold (Maximum Probability):

The threshold of EASE Score, a modified Fisher Exact P-Value, for gene-enrichment analysis. It ranges from 0 to 1. Fisher Exact P-Value = 0 represents perfect enrichment. Usually P-Value is equal or smaller than 0.05 to be considered strongly enriched in the annotation categories. Default is 0.1. More details.

Count Threshold (Minimum Count):

The threshold of minimum gene counts belonging to an annotation term. It has to be equal or greater than 0. Default is 2. In short, you do not trust the term only having one gene involved.

RT (Related Term Search):

Related Term Search can identify other similar terms. More details.

Meta Analysis of published data - Geo

Enrichment analysis – gprofiler

Semantic similarity - Revigo

Network analysis- String

- Pdf instructions accompanying presentation

Live demonstration – for live session

CARDIFF					
PRIFYSGOL CAERDYD					

Transcripts vs transcription complex (promoters/enhances)

Sequence Based Analysis

- Special arrangement bias
 - Genes with common regulation occur in specific areas of the genome i.e. In "operons" or areas under same "locus control".
- Promoter Analysis
 - Gene with common regulation share a common Transcription
 Factor Binding Site(s) (TFBS) within their promoters.

 Determine evidence based relationship between members of a specific transcriptome.....proteomic and metabolomic data can also be integrated.

http://www.genmapp.org/ http://www.cytoscape.org/

CARDIFF					
PRIFYSGOL CAERDYD					

Only as good as you experimental descriptors

Meta data and data repositories

Data management and MIAME

- 1. Transcriptomic Meta Data
- 2. MIAME (Data Standards,

(www.mged.org/Workgroups/MIAME/miame.html)

3. MGED Ontology (Vocabulary,

www.mged.org/)

4. MAGE (standard representation,

www.mged.org/Workgroups/MAGE/mage.html)

- Non-specific data warehouses
 - GEO
 - (http://www.ncbi.nlm.nih.gov/gds/)
 - Array express
 - (http://www.ebi.ac.uk/microarray-as/ae/)

...and many other specific sites

Process	<u>Approach</u>	<u>Software</u>		
Differential Data Analysis	T-test Anova Time course analysis	R / <u>GEO</u>		
Functional	Enrichment Analysis	<u>David</u>		
Interpretation	(EASE)	gprofiler		
Systems	Semantics	<u>Revigo</u>		
Level	Or Network	<u>Cytoscape</u>		
thinking	Analysis	<u>STRING</u>		

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

RNAseq & microarray:

- RNA content = transcript analysis
- Microarray = a subset of targets
- RNAseq = ALL => careful about experiment design
- RNA > counts > normalised counts > stats > analyses

Read a paper – what do you want to know

Critical thinking: does it make sense to you?

- Experience design : replicates? Controls? Confounding factors?
- Normalization all samples together, what methods, how
- Statistics? Significant how?

<u>Analyses</u>:

What is your question?

- $_{\odot}~$ How to subsample
- What to test (and how to test it)