

Processing RNAseq

- A jungle of file formats

Prof Peter Kille

Process

Alignment

STAR/HiSAT(tophat)/Kalisto

Map reads to reference genome

Counting

FeatureCounts/htseq-count

Quantify number of reads at gene boundaries

(mark duplicates)

Differential Gene Analysis

Deseq2/edgeR

Statistically test whether read counts are different

Alignment with Star

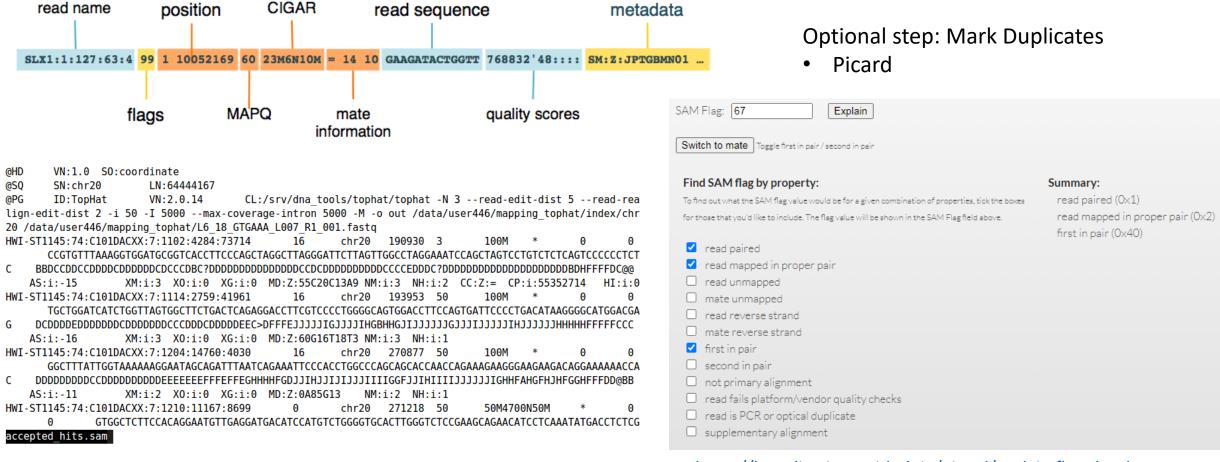
Spliced Transcripts Alignment to a Reference (STAR)

- Novel RNA-seq alignment algorithm that uses sequential maximum mappable seed search.
- "STAR outperforms other aligners by a factor of >50 in mapping speed"
- Note: Multimapping

Combine reference genome (fasta), gene boundaries (gtf) and RNAseq (fastq)

Alexander Dobin, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha, Philippe Batut, Mark Chaisson, Thomas R. Gingeras, STAR: ultrafast universal RNA-seq aligner, *Bioinformatics*, Volume 29, Issue 1, January 2013, Pages 15–21, https://doi.org/10.1093/bioinformatics/bts635

Ensmbl reference databases


https://plants.ensembl.org/info/website/ftp/index.html

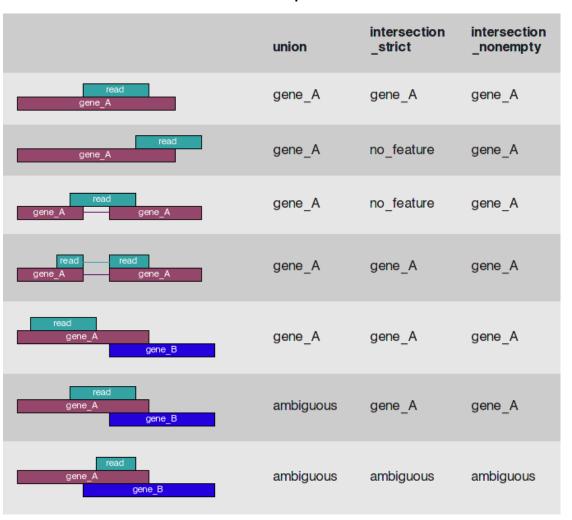
Show 10 ✓ entries													Filter	
Species	DNA	cDNA	CDS	ncRNA	Protein	EMBL	GENBANK	MySQL	TSV	GTF	GFF3	GVF	VCF	VEP
Actinidia chinensis	FASTA & (DNA)	FASTA & (cDNA)	FASTA Ø (CDS)	FASTA & (ncRNA)	FASTA & (protein)	<u>EMBL</u> ₽	GenBank®	MySQL(core)r₽	<u>TSV</u> ₽	<u>GTF</u> &	GFF3₽			<u>VEP</u> ₽
Aegilops tauschii	FASTA & (DNA)	FASTA & (cDNA)	FASTA & (CDS)	FASTA & (ncRNA)	FASTA & (protein)	<u>EMBL</u> ₽	<u>GenBank</u> ಡ	<u>MySQL(core)</u> ਲ <u>MySQL(otherfeatures)</u> ਲ <u>MySQL(funcgen)</u> ਲੋ	<u>TSV</u> ₽	<u>GTF</u> €	GFF3₽			<u>VEP</u> ₽
Amborella trichopoda	FASTA & (DNA)	FASTA & (cDNA)	FASTA & (CDS)	FASTA & (ncRNA)	FASTA & (protein)	EMBL ₽	GenBank®	MySQL(core)r₽	<u>TSV</u> ₽	GTF ₺	GFF3 ₽			<u>VEP</u> ₽
Ananas comosus	FASTA & (DNA)	FASTA & (cDNA)	FASTA & (CDS)	FASTA & (ncRNA)	FASTA & (protein)	<u>EMBL</u> ₽	GenBank®	MySQL(core)r₽	<u>TSV</u> ₽	<u>GTF</u> &	GFF3₽			<u>VEP</u> ₽
<u>Arabidopsis halleri</u>	FASTA & (DNA)	FASTA Ø (cDNA)	FASTA № (CDS)	FASTA & (ncRNA)	FASTA ☑ (protein)	<u>EMBL</u> ₽	<u>GenBank</u> ®	<u>MySQL(core</u>)률 <u>MySQL(funcgen)</u> 률	<u>TSV</u> ₽	<u>GTF</u> &	<u>GFF3</u> ₽			<u>VEP</u> ₽
<u>Arabidopsis lyrata</u>	FASTA & (DNA)	FASTA & (cDNA)	FASTA & (CDS)	FASTA & (ncRNA)	FASTA & (protein)	<u>EMBL</u> ₽	GenBank®	MySQL(core)r₽	<u>TSV</u> ₽	<u>GTF</u> &	GFF3₽			<u>VEP</u> ₽
<u>Arabidopsis thaliana</u>	FASTA Ø (DNA)	FASTA Ø (cDNA)	FASTA Ø (CDS)	FASTA & (ncRNA)	FASTA ☑ (protein)	<u>EMBL</u> ₽	GenBank®	MySQL(core) 률 MySQL(funcgen) 률 MySQL(variation) 률	<u>TSV</u> ₽	<u>GTF</u> €	GFF3₽	<u>GVF</u> ₽	<u>VCF</u> ₽	<u>VEP</u> ₽
Beta vulgaris	FASTA & (DNA)	FASTA & (cDNA)	FASTA & (CDS)	FASTA & (ncRNA)	FASTA & (protein)	<u>EMBL</u> ₽	GenBank®	MySQL(core)r₽	<u>TSV</u> ₽	<u>GTF</u> &	GFF3₽			<u>VEP</u> ₽
Brachypodium distachyon	FASTA & (DNA)	FASTA & (cDNA)	FASTA № (CDS)	FASTA Ø (ncRNA)	FASTA ☑ (protein)	<u>EMBL</u> ₽	GenBank®	MySQL(core)를 MySQL(variation)를	<u>TSV</u> ₽	<u>GTF</u> €	<u>GFF3</u> ₽	<u>GVF</u> ₽	<u>VCF</u> ₽	<u>VEP</u> ₽
Brassica napus	FASTA Ø (DNA)	FASTA & (cDNA)	FASTA & (CDS)	FASTA & (ncRNA)	FASTA ☑ (protein)	<u>EMBL</u> &	<u>GenBank</u> &	<u>MySQL(core)</u> 굡 <u>MySQL(funcgen)</u> 굡	<u>TSV</u> ₽	<u>GTF</u> ₽	<u>GFF3</u> ₽			<u>VEP</u> ₽
Showing 1 to 10 of 79 entries												<< < 1	2 3 4	5 > >>

Col 1	Co1 2	Col 3	Col 4	<u>Col 5</u>	Col 6	Col 7	Col 8	Col 9
chr21	HAVANA	transcript	10862622	10863067	1 48	+	*	gene_id "ENSG00000169
chr21	HAVANA	exon	10862622	10862667	<u>(i)</u>	+	ž.	gene id "ENSG00000169
chr21	HAVANA	CDS	10862622	10862667	. •8	+	0	gene id "ENSG00000169
chr21	HAVANA	start codon	10862622	10862624	<u></u>	+	0	gene id "ENSG00000169
chr21	HAVANA	exon	10862751	10863067	**	+	355 100 100 100 100 100 100 100 100 100 1	gene id "ENSG00000169
chr21	HAVANA	CDS	10862751	10863064	3	+	2	gene id "ENSG00000169
chr21	HAVANA	stop codon	10863065	10863067	•	+	0	gene id "ENSG00000169
chr21	HAVANA	UTR	10863065	10863067	3	+	8	gene_id "ENSG00000169

Output from alignment: bam/sam files

HEADER containing metadata (sequence dictionary, read group definitions etc.) **RECORDS** containing structured read information (1 line per read record)

https://broadinstitute.github.io/picard/explain-flags.html

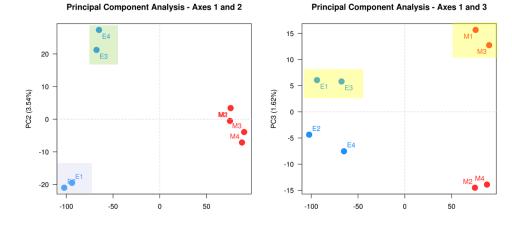

Counting

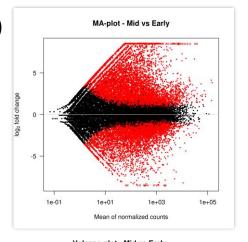
FeatureCounts part of subread

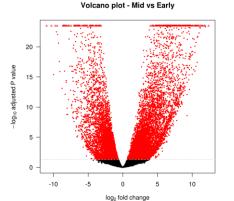
- a software program developed for counting reads to genomic features such as genes, exons, promoters and genomic bins.
 - ~20x faster
 - More definitive on ambiguities
 - Better with paired end data
 - http://subread.sourceforge.net/

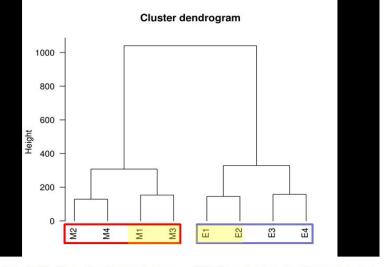
```
Program: featureCounts v2.0.0; Command: "/trinity/home/sbi6dap/homespace/local/subread-2.0.0-Linux-x86 64/bin/featu
            Start End Strand Length /trinity/home/sbi6dap/scratchspace/Yasir Syed/markdup/AD1 26.markdup
ENSG00000223972 1;1;1;1;1;1;1;1;1
                                   11869; 12010; 12179; 12613; 12613; 12975; 13221; 13221; 13453 12227; 12057; 12227; 1
                                  14404; 15005; 15796; 16607; 16858; 17233; 17606; 17915; 18268; 24738; 29534
ENSG00000227232 1;1;1;1;1;1;1;1;1;1;1
                                         68
                           17436
                            29554;30267;30564;30976;30976
ENSG00000243485 1:1:1:1:1
                                                       30039;30667;30667;31109;31097
                            30503
                                         138
                            34554;35245;35277;35721;35721
                                                       35174;35481;35481;36073;36081
                                                                                                  121
ENSG00000237613 1;1;1;1;1
                    52473 53312 +
                                         840
ENSG00000240361 1;1;1;1 57598;58700;62916;62949 57653;58856;64116;63887 +;+;+;+ 1414
ENSG00000186092 1;1;1;1 65419;65520;69037;69055 65433;65573;71585;70108 +;+;+;+ 2618 0
ENSG00000238009 1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1
                                                89295;92091;92230;110953;112700;112700;112700;120721;120725
ENSG00000239945 1;1
                    89551;90287
                                   90050;91105
                                                       1319
ENSG00000233750 1
                    131025
                           134836
                                         3812
ENSG00000268903 1
                     135141
                           135895
                                          755
                                         284
ENSG00000269981 1
                     137682
                           137965
                    139790;140075
                                  139847;140339
141474; 142808; 146386; 146386; 146386; 146642; 155767; 16
ENSG00000222623 1
                     157784 157887
                     160446;161314
                                  160690;161525
ENSG00000241599 1;1
                                                       457
                            182696; 183132; 183494; 183740; 183981
ENSG00000279928 1;1;1;1;1
                                                              182746; 183216; 183571; 183901; 184174
                                   185217; 185491; 186317; 187129; 187376; 187755; 188130; 188439; 188791; 195263
ENSG00000273874 1
                    187891 187958
257864; 257913; 258144; 258524; 258568; 261550; 263015; 264604; 267
                    266855;268122 267056;268655
ENSG00000236679 1
                    347982
                           348366
                                         385
ENSG00000236601 1;1;1;1;1;1
                            358857; 358872; 360057; 365171; 365171; 365171
                                                                      358929;358957;360168;365510;366052
ENSG00000269732 1
                    439870 440232
                                         995
ENSG00000284733 1
                    450703
                           451697
ENSG00000233653 1;1
                    487101;489717
                                  489387;489906
                                                       2477
                    491225;492768
                                  491989;493241
                                                       1239
                    516376 516479
                                         104
ENSG00000235146 1;1;1;1 587629;587668;594235;594235
                                                587701;587729;594768;594574
```

Htseq




Differential gene Analysis


Deseq2 vs edgeR


- O Both do the same:
 - T-tests / Volcano plots
 - Log2(fold change) vs mean count (MA plots /FC plots)
 - Dendrograms
 - Principal Component Analysis (PCA)
 - O ANOVA
 - Multiple Sample correction
 - Hierarchical Cluster Analysis

More next time!

